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Abstract: We demonstrate a modified version of laser-induced fluorescence thermometry 
(LIFT) for mapping temperature gradients in the vicinity of small photothermal devices. Our 
approach is based on temperature sensitive fluorescent membranes fabricated with rhodamine 
B and polydimethylsiloxane (PDMS). Relevant membrane features for LIFT, such as 
temperature sensitivity, thermal quenching and photobleaching are presented for a range 
of  25 °C to 90 °C, and their performance is evaluated upon obtaining the temperature 
gradients produced in the proximity of optical fiber micro-heaters. Our results show that 
temperature measurements in regions as small as 750 µm x 650 µm, with a temperature 
resolution of 1 °C, can be readily obtained. 
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OCIS codes: (160.4670) Optical materials; (160.5470) Polymers; (160.2540) Fluorescent and luminescent materials; 
(350.5340) Photothermal effects; (100.2960) Image analysis. 

References and links 
1. E. Samiei, M. Tabrizian, and M. Hoorfar, “A review of digital microfluidics as portable platforms for lab-on a-

chip applications,” Lab Chip 16(13), 2376–2396 (2016).
2. M. M. Kim, A. Giry, M. Mastiani, G. O. Rodrigues, A. Reis, and P. Mandin, “Microscale thermometry: A

review,” Microelectron. Eng. 148, 129–142 (2015).
3. V. K. Natrajan and K. T. Christensen, “Fluorescent Thermometry,” in Encyclopedia of Microfluidics and 

Nanofluidics, D. Li, ed. (Springer, 2015).
4. P. Löw, B. Kim, N. Takama, and C. Bergaud, “High-spatial-resolution surface-temperature mapping using

fluorescent thermometry,” Small 4(7), 908–914 (2008).
5. D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a 

temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
6. R. Fu, B. Xu, and D. Li, “Study of the temperature field in microchannels of a PDMS chip with embedded local

heater using temperature-dependent fluorescent dye,” Int. J. Therm. Sci. 45(9), 841–847 (2006).
7. V. K. Natrajan and K. T. Christensen, “Two-color laser-induced fluorescent thermometry for microfluidic

systems,” Meas. Sci. Technol. 20(1), 015401 (2009).
8. P. Chamarthy, S. V. Garimella, and S. T. Wereley, “Measurement of the temperature non-uniformity in a

microchannel heat sink using microscale laser-induced fluorescence,” Int. J. Heat Mass Transfer 53(15-16),
3275–3283 (2010). 

9. J. Wu, T. Y. Kwok, X. Li, W. Cao, Y. Wang, J. Huang, Y. Hong, D. Zhang, and W. Wen, “Mapping three-
dimensional temperature in microfluidic chip,” Sci. Rep. 3(1), 3321 (2013).

10. W. Jung, Y. W. Kim, D. Yim, and J. Y. Yoo, “Microscale surface thermometry using SU8/Rhodamine-B thin 
layer,” Sensors Actuator A 171(2), 228–232 (2011).

11. S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser 
trap,” Opt. Express 15(23), 15493–15499 (2007).

12. D. Moreau, C. Lefort, R. Burke, P. Leveque, and R. P. O’Connor, “Rhodamine B as an optical thermometer in
cells focally exposed to infrared laser light or nanosecond pulsed electric fields,” Biomed. Opt. Express 6(10),
4105–4117 (2015). 

13. L. Gui and C. L. Ren, “Temperature measurement in microfluidic chips using photobleaching of a fluorescent 
thin film,” Appl. Phys. Lett. 92(2), 024102 (2008).

14. G. Y. Zhuo, H. C. Su, H. Y. Wang, and M. C. Chan, “In situ high-resolution thermal microscopy on integrated
circuits,” Opt. Express 25(18), 21548–21558 (2017).

                                                                                 Vol. 8, No. 10 | 1 Oct 2018 | OPTICAL MATERIALS EXPRESS 3072 

#335486 https://doi.org/10.1364/OME.8.003072 
Journal © 2018 Received 20 Jun 2018; revised 17 Aug 2018; accepted 18 Aug 2018; published 11 Sep 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OME.8.003072&domain=pdf&date_stamp=2018-09-11


15. L. V. J. Behm, I. Schlenther, M. Petrausch, F. Jorde, N. Godino, F. Pfisterer, C. Duschl, and M. Kirschbaum, “A 
simple approach for the precise measurement of surface temperature distributions on the microscale under dry 
and liquid condition based on thin Rhodamine B films,” Sens. Actuators B Chem. 255, 2023–2031 (2018). 

16. M. P. Wolf, G. B. Salieb-Beugelaar, and P. Hunziker, “PDMS with designer functionalities-properties, 
modifications strategies, and applications,” Prog. Polym. Sci. 83, 97–134 (2018). 

17. R. Pimentel-Domínguez, P. Moreno-Álvarez, M. Hautefeuille, A. Chavarría, and J. Hernández-Cordero, 
“Photothermal lesions in soft tissue induced by optical fiber microheaters,” Biomed. Opt. Express 7(4), 1138–
1148 (2016). 

18. R. Pimentel-Domínguez, A. M. Velázquez-Benítez, J. R. Vélez-Cordero, M. Hautefeuille, F. Sánchez-Arévalo, 
and J. Hernández-Cordero, “Photothermal effects and applications of polydimethylsiloxane membranes with 
carbon nanoparticles,” Polymers (Basel) 8(4), 84 (2016). 

19. G. Liu, Q. Sheng, D. Dam, J. Hua, W. Hou, and M. Han, “Self-gauged fiber-optic micro-heater with an operation 
temperature above 1000°C,” Opt. Lett. 42(7), 1412–1415 (2017). 

1. Introduction 
The advent of new microanalysis platforms, such as lab on a chip and microfluidic systems, 
has triggered extensive research aimed at studying thermal phenomena at the micron scale 
[1]. Given the size of these systems, phenomena such as heat transfer and heat loss to the 
surrounding media become relevant for most practical applications (e.g., DNA replication, 
electronic cooling, thermal generation of pH gradients [2]) and are of paramount interest for 
characterization and optimization purposes. In addition to temperature measurements, it is 
often desirable to obtain a temperature map, which could provide useful information related 
to thermal phenomena occurring in the system and its vicinity [1,2]. In general, a 'micro-
thermometer' should be able to provide high spatial resolution, high acquisition rate for real-
time sampling, low thermal inertia for rapid response and adequate temperature resolution. 
Among these features, measurements with high spatial resolution are perhaps the most 
challenging to obtain. 

Several methods have shown to provide high spatial resolution (<1 µm) temperature 
measurements achieving thermal resolutions of less than <0.1 °C [2]. Contact techniques, 
involving the use of devices such as scanning thermal probes or micro- and nano-
thermocouples, provide an effective means to obtain local temperature measurements with 
spatial resolutions of up to 0.01 µm [2]. Non-contact techniques, albeit more elaborated and 
expensive, can yield a two-dimensional temperature map with high spatial resolution (e.g., 
0.1 µm with infrared thermometry) and accuracy (e.g., 1 μK with laser interferometry) [2]. 
Among the different non-intrusive techniques available, fluorescent thermometry is one of the 
most widely used owing to its relative simplicity using commercially available cameras (CCD 
or CMOS); it can further be adapted to a microscope to obtain high spatial resolution 
measurements [3,4]. Temperature measurements rely on a fluorophore, typically a dye whose 
fluorescent intensity decreases with temperature, which can be either dissolved in a fluid or 
deposited on a surface of interest [4–6]. Excitation of the fluorophore is customarily done 
with laser light; hence, the technique is termed laser-induced fluorescence thermometry 
(LIFT). The spatial resolution depends on the imaging optics whereas the temporal resolution 
is defined by the framing rate of the camera. Successful applications of LIFT include 
temperature mapping of microfluidic channels [7–9], characterization of electrical 
microheaters [10] and thermal mapping of an optical trap [11], to name a few. 

Rhodamine B (RhB) is the most widely used dye for LIFT, and its fluorescence intensity 
strongly depends on the solvent [3–10]. Water and ethanol based solutions are the most 
common choices for temperature measurements in liquid samples, although other solvents 
such as sodium carbonate buffer solutions have also shown to perform well [5,6,11,12]. For 
temperature mapping of dry surfaces, RhB can also be incorporated into polymer matrices to 
fabricate temperature sensitive films [9,10,13–15]. In particular, integration of RhB into 
polydimethylsiloxane (PDMS) is of interest because of its dominant role in microfluidic and 
lab-on a-chip platforms [16]. In this work, we show a simple method for fabricating 
temperature sensitive PDMS membranes with RhB for LIFT. The PDMS-RhB composite is 
obtained by simple mixing and is subsequently molded and cured to yield large membranes 
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2.3 Laser-induced fluorescence thermometry setup 

The setup for LIFT measurements comprised a CW diode-pumped solid-state green laser (532 
nm, BWTEK, model BWI532-50-E, beam diameter < 1 mm) with ± 3% power stability. The 
illumination area is increased by a lens (10x, NA 0.25) yielding a spot size of approximately 2 
cm. Images are acquired using a CMOS camera (Thorlabs, DCC1645C) with a 10x 
microscope objective (see Fig. 1). A notch filter (533 nm, 17 nm FWHM, Thorlabs, NF533-
17) was further used to eliminate the green radiation in the images recorded by the camera. 
As seen in Fig. 1, a 50% beam splitter was used to simultaneously excite with the laser the 
fluorescence of the PDMS-RhB membranes and for monitoring power fluctuations. The latter 
was done by means of an optical power meter and a thermal power sensor (Thorlabs, S302C). 
Data from the sensor allowed us to account for spurious effects of laser power fluctuations 
that typically require using two dyes (one of them temperature insensitive) or two cameras 
[7,8]. Our modified version for LIFT allowed for minimizing these effects simply by taking 
the intensity ratio of the images to that registered by the sensor. More details of this 
normalization process are provided below. 

For temperature calibration, the membranes were placed on the ceramic heater and the 
temperature was set to a desired value. Fluorescence images were then acquired and post-
processed to yield the calibration curves (i.e., normalized intensity vs. temperature) for the 
membranes. For all measurements, the camera gain was adjusted manually and kept constant. 
The resulting curves were then used to obtain the temperature maps across the membranes; 
with this setup, the spatial resolution of the imaging system was 2.7 µm/pixel. 

2.4 Temperature calibration and image processing 

The calibration curves were obtained from fluorescence images of the PDMS-RhB membrane 
acquired for a temperature range from 20 to 90 °C with intervals of 10 °C. Each image was 
acquired after achieving a steady temperature with the controller. The average time required 
to obtain an adequate thermal equilibrium for calibration purposes was approximately 10 
minutes. Notice that this time constraint is due to the heater control system, and is not 
inherent to the thermal and fluorescence response of the membranes. 

A temperature of 25 °C was selected as the baseline reading for all measurements. The 
PDMS-RhB membranes were exposed to laser excitation for 1 minute and during this time, 
10 images along with their corresponding laser power were registered. In order to minimize 
possible quenching or bleaching effects, the incident laser light was blocked between 
measurements. The fluorescence intensity was analyzed considering an average intensity 
value calculated for each image using a gray scale conversion. This allowed us to obtain a 
ratio of the average fluorescence intensity (I) to the laser power (P) for each temperature; this 
ratio was then normalized using the ratio of the initial intensity to the initial laser power (I0 / 
P0), i.e.: 

 
0 0

/ .
/N

I P
I

I P
=  (1) 

Notice that this normalization procedure accounts for average fluctuations in the laser 
power. Finally, the calibration curve was obtained plotting the normalized fluorescence 
intensity as a function of temperature. 

3. Results and discussion 

3.1 PDMS-RhB membranes: calibration and performance 

The fabrication process mentioned above allowed us to obtain large PDMS-RhB membranes 
whose dimensions are limited by the size of the mold. For our experiments, we fabricated 
membranes with a maximum area of 20 mm by 70 mm and a thickness of 300 µm ± 30 µm. 
In contrast to other methods, the process to fabricate the membranes allowed us to embed the 
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temperature obtained from the fluorescence of the membranes showed a similar trend as the 
data from the thermistor, albeit providing a lower reading. Hence, the fluorescence can 
readily track the temperature changes, however, an accurate temperature reading can only be 
obtained after the emission has reached a steady state value. From Fig. 3(b), a stable 
temperature reading in the thermistor occurs at approximately 200 s, while the fluorescence 
reading reaches a steady value at around 350 s, yielding a settling time of 2.5 min to obtain an 
accurate temperature reading. We attribute this limitation to the low thermal conductivity of 
PDMS host matrix  (0.15 Wm−1K−1), which is known to impose some constraints when using 
PDMS in applications involving heat transfer phenomena [9,18]. Similar response times have 
been reported when using PDMS functionalized with RhB [9]; in contrast, to previous 
reports, our fabrication method involves only simple mixing without requiring any chemical 
process to incorporate the RhB in the host matrix. 

3.2 Application to micro-thermometry: characterization of optical fiber micro-heaters 

Optical fiber micro-heaters (OFMHs) are devices fabricated with layers of absorbing 
materials deposited on the tip of optical fibers; these photothermal devices are capable to 
increase the temperature in a highly localized manner [17,19]. Because they are made with 
standard optical fibers (125 μm diameter), the cross-sectional area of these heating elements 
is within a few hundred microns. The absorbing layer is deposited on the output end of the 
fiber and laser light (typically a laser diode) is then launched at the opposite end. Heat is 
subsequently produced and dissipated in the vicinity of the tip of the device. From previous 
reports, it is known that the increase in temperature in the vicinity of OFMHs is proportional 
to the optical power launched into the fiber [19]. However, information of the temperature 
distribution within the small area heated by these devices becomes relevant for applications 
involving biological tissue [17]. We therefore explored the feasibility to obtain the 
temperature maps in the surroundings of an OFMH using the PDMS-RhB membranes and 
LIFT. 

For our experiments, we used OFMHs based on gold nanolayers, which have been 
previously reported to induce thermal damage in soft tissue [17]. The device was placed in 
physical contact with one edge of a PDMS-RhB membrane (see Fig. 4(a)). We first acquired 
10 reference images at 25 °C, which were averaged and used to obtain the intensity reference 
ratio for each pixel. Subsequently, for each of the laser diode powers used in the test, 10 
images were acquired and averaged and these were then used to estimate the intensity ratio 
for each pixel. The normalized intensity was then obtained upon dividing the intensity ratio 
by the reference ratio for the same pixels [3]. Finally, this normalized intensity was converted 
to temperature using the calibration curve for the membrane, thus yielding an image of the 
temperature distribution around the OFMH. A graphic depiction of this process is shown in 
Fig. 4(b). The images shown in Fig. 4(c) were obtained directly from the PDMS-RhB 
membranes for different powers of the laser diode; a decrease in fluorescence intensity is 
apparent in the vicinity of the OFMH, located at the bottom of the membrane as depicted in 
the images. Furthermore, as suggested by the dark areas in the images, the fluorescence 
intensity seems to be lower for higher powers of the laser diode. 

The temperature maps obtained after processing the fluorescence images (Fig. 4(c)) are 
shown in Fig. 4(d). Clearly, the heat produced by the OFMH is dissipated around the OFMH 
tip; notice also that the registered temperature increases with the optical power, as previously 
reported for these devices [17,19]. Interestingly, the heated region seems to be smaller than 
one millimeter. For this particular case, the OFMH reached a maximum temperature of 78 °C 
and the total heated area was 750 µm x 650 µm. Using additional image processing, we can 
further estimate the temperature within a defined region of interest within the image. As an 
example, Fig. 4(e) shows the average temperature in a region close to the OFMH tip (80 µm 
X 80 µm) delimited by the red square in the temperature map shown in Fig. 4(d). As 
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